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Scaling of transient hydrodynamic interactions in hard sphere suspensions

H. J. H. Clercx
Department of Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 24 March 1997!

Analyses of retarded hydrodynamic interactions between pairs of spheres, computed in Fourier space over
the full frequency range, have been performed to investigate scaling of the time-dependent self-diffusion
coefficient Ds(t,w). It appears that up to intermediate volume fractions (w<0.15) Ds(t,w) shows scaling
behavior when both the characteristic timet is appropriately rescaled andDs(t,w) is normalized by the
short-time self-diffusion coefficient of the suspensionDs5D0(121.83w). The rescaled characteristic time is
based on matching of the long-time tail of the velocity autocorrelation function with the single-particle result.
Scaling is observed for a range of particle to fluid density ratios~for 0<s<2, s5rs /r, with rs the particle
density andr the fluid mass density!. Scaling for higher volume fractions, which is already present when the
characteristic time is computed by optimal fitting, might be improved by including three-particle hydrodynamic
interactions. The present results support the conclusion that modification of correlation functions in hard sphere
suspensions, in order to include effects of two-particle hydrodynamic interactions, is already sufficient to show
the existence of scaling ofDs(t,w). @S1063-651X~97!02909-7#

PACS number~s!: 47.15.Gf, 05.40.1j, 82.70.Kj
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I. INTRODUCTION

A colloidal suspension is a system of small particles i
mersed in a fluid. The characteristic radiusa of the sus-
pended particles is generally much larger than the len
scale associated with the solvent molecules. This allows
application of continuum theories to describe the fluid m
tion ~usually the Navier-Stokes equations for incompress
flows! in order to study the hydrodynamic interactio
among the suspended particles. On the other hand, the
ticle radius is still small enough so that the Reynolds num
Re is negligible or, in terms of characteristic quantities as
average particle velocityU and the kinematic viscosity of th
fluid ~n!: Re5Ua/n!1. When this condition is satisfied
is allowed to linearize the Navier-Stokes equations, wh
simplify analytical solution procedures substantially.

A better understanding of the rheological behavior of c
loidal suspensions is of considerable practical interest, e
cially for industrial and engineering applications. Examp
can be found in the food processing industry, paint indus
etc. Particular model suspensions of hard spheres or rod
particles, immersed in a Newtonian fluid, with specific inte
action characteristics among the particles are extremely
able to carry out experiments aimed at fundamental resea
such as investigations of phase transition phenomena o
short-time particle dynamics in the prediffusive regime. E
perimental, numerical, and theoretical studies of the dyna
cal and structural behavior of suspensions are often base
such model systems. By means of light-scattering exp
ments the dynamics of the particles in the fluid and the str
ture of the suspension can be studied. Some importan
pects of the study of suspension dynamics are measurem
of the ~short-time! diffusivity of the particles and elucidating
the role of hydrodynamic interactions in modifying the se
diffusion of a tagged particle. The recent development
diffusing wave spectroscopy~DWS!, a dynamic light-
scattering technique that exploits the multiple-scatter
characteristics of dense suspensions in order to approxim
561063-651X/97/56~3!/2950~8!/$10.00
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the transport of light through a suspension by means o
diffusive process@1#, has opened the way to measureme
of particle dynamics on very-short-time scales. On these t
scales the particle dynamics is still nondiffusive. Probi
particle dynamics on such short-time scales is particula
important because particle interactions are then domina
by transient hydrodynamics and it allows the study of lon
time tails of velocity autocorrelation functions in mesoscop
hard sphere systems.

One of the most remarkable experimental observations
the short-time dynamics of colloidal suspensions in rec
past is the scaling behavior of the time-dependent s
diffusion coefficientDs(t,w), wherew denotes the volume
fraction of dispersed particles. Zhuet al. @2# have reported
experimentally measured time-dependent diffusion coe
cients, in the regime where the hydrodynamic interactio
are transient, by employing DWS techniques. They ha
shown, by introducing suitable scaling parameters, that
curves ofDs(t,w) could be collapsed onto a single mast
curve. The scaling procedure proposed by Zhuet al. is based
on rescaling the characteristic timet05a2r/h ~with r the
fluid mass density! by using the suspension shear viscos
h~w! instead of the fluid shear viscosityh @resulting in a new
characteristic timetw5a2r/h(w)# and normalizing the
time-dependent self-diffusion coefficient by its long-tim
limit Ds5D0(121.83w) @3# ~the long-time limit should be
read here as time scales much longer thant0 , but short
enough to keep the particle configuration effectively u
changed!. Forh~w! they have used a theoretical result for t
high-frequency viscosity of a suspension of hard spheres@4#.
Such a scaling basically means that the dynamics of parti
in the suspension is apparently the same as if the particles
moving like single particles in an effective fluid with th
suspension viscosity.

Since the interesting observations by Zhu and co-work
some more experiments have been carried out@5–7#. Kao,
Yodh, and Pine@5# introduced some more scaling recip
showing that the precise scaling scenario is not extrem
2950 © 1997 The American Physical Society
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56 2951SCALING OF TRANSIENT HYDRODYNAMIC . . .
important; all experimental data could reasonably well
collapsed onto a master curve with three slightly differe
scaling procedures. They also claimed that scaling sets i
much smaller times (t.0.1t0) than expected on the basis
the propagation of hydrodynamic interactions, which is e
pected to occur on time scales comparable tot0 ~the time
scale associated with the diffusion of vorticity over a d
tance comparable with the particle radius!. Evidence for scal-
ing is also supported by results from numerical simulatio
Investigations by means of molecular-dynamics techniq
@8# and by lattice Boltzmann methods@7,9–11# have been
carried out to measure the scaling properties of ideal h
sphere suspensions in more detail. Lowe and Frenkel@11#
have reported numerical simulations in order to study
scaling behavior of the velocity autocorrelation functi
~VACF! c(t,w) of a tagged Brownian particle in a suspe
sion. The conclusion of that investigation is that effecti
fluid behavior only occurs on a time scale slightly long
than t0 (t>4tw), contradicting the observations by Ka
Yodh, and Pine. Theoretical results aimed at explaining
scaling of Ds(t,w) and c(t,w) or aimed at showing tha
scaling could be obtained on the basis of hydrodynamics
rare. Milner and Liu@12# have derived an expression for th
concentration dependence of the long-time tail of the VAC
They have shown, by analyzing the low-frequency behav
of the hydrodynamic interactions, that the long-time tail
the VACF in suspensions looks like the long-time tail of
single particle in a fluid with the suspension viscosity. T
expression obtained by Milner and Liu is, however, on
valid for times much larger than the Brownian relaxati
time t05a2r/h. Clercx and Schram@13# have carried out a
complete analysis of two-particle hydrodynamic interactio
based on a multipole expansion of the flow field in Four
space~with respect to time! in terms of vector spherical har
monics, which is valid over the complete frequency doma
With this particular method it is possible to study the effe
of retarded hydrodynamic interactions on particle dynam
for all times, thus also on the small- and intermediate-ti
scales probed during the experiments by Zhuet al. @2# and
Kao, Yodh, and Pine@5#. The analytical results in Ref.@13#
have been presented in terms of frequency-dependent c
ponents of the mobility matrix, and a few results of the tim
dependent self-diffusion coefficient have been shown.
scaling analysis ofDs(t,w) and c(t,w) has been made in
that study. Some other approaches have been reported i
literature @14,15#, but have the disadvantage that they a
only valid for some particular frequency range or time d
main. An overview on the topic of scaling of the time
dependent self-diffusion coefficient can be found in the
view paper by Espan˜ol and Zúñiga @16#.

In Sec. II an outline is given of the procedure to determ
the velocity correlation functions, including the effects
hydrodynamic interactions on these correlation functio
Results for the time-dependent self-diffusion coefficient a
function of volume fraction are presented in Sec. III, inclu
ing an analysis of scaling based on two scaling scenarios.
end this paper by summarizing the main results and givin
conclusion in Sec. IV.

II. DERIVATION OF THE VELOCITY CORRELATION
MATRIX

It has already been known for a long time that the dyna
ics of a Brownian particle in a viscous fluid is more comp
e
t
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cated than expected on the basis of the solution of the Lan
vin equation

m
dU~ t !

dt
52zU~ t !1R~ t !, ~1!

with U(t) the velocity of the Brownian particle,m its
mass, z56pha the friction coefficient for spherica
particles, andR(t) a random force exerted by the flui
molecules during collisions with the Brownian particl
The random force is assumed to be Gaussian, i.e.,^R(t)&
50, where^ & denotes an ensemble average. Furtherm
white-noise statistics is assumed, i.e.,^Ri(t)Rj (t1t0)&
52zkBTd i j d(t0), with kB the Boltzmann constant an
T the absolute temperature. The assumption of wh
noise statistics means that successive collisions of fluid m
ecules with the Brownian particle are uncorrelated. Fr
Eq. ~1! it is possible to derive in a straightforward mann
an explicit relation for the VACF. The result isc(t0)
5^U(t)U(t1t0)&5(kBT/m)exp(2zt0 /m).

The classical Langevin approach described above app
to be sufficient when the behavior of Brownian particles
studied on long-time scales, i.e., on time scales where
VACF has already decayed. On shorter time scales a m
adequate description of hydrodynamics has to be used.
insight started to grow some 30 years ago with the adven
computer simulations of the behavior of fluids at the mole
lar level. Alder and Wainwright@17,18# found in computer
experiments, where they simulated the motion of a tag
particle in a hard sphere fluid, that the VACF of that tagg
particle has a long-time tail resulting in a surprisingly slo
decay of the VACF, viz.,c(t0).t0

23/2 whent0@t0 , instead
of showing an exponential decay. Alder and Wainwrig
were also able to explain the long-time tail for thre
dimensional hard sphere fluids by considering the coop
tive effect from the surrounding fluid molecules, which c
be described by macroscopic hydrodynamics@17,18# ~see
also the works of Zwanzig and Bixon@19# and Case@20#!.
The dynamics of a Brownian particle is in fact governed
a combination of forces and is appropriately described by
so-called Stokes-Boussinesq equation

M
dU~ t !

dt
52zU~ t !26a2Aprh E

0

t 1

At2t

dU~t!

dt
dt

1R~ t !, ~2!

with M5m1 1
2 m0 , the effective mass associated with bo

the particle mass and the massm0 of the displaced fluid
during particle motion. The second term on the right-ha
side of Eq.~2! is the memory term and is associated with
retarded viscous force. This contribution is also known as
Basset history force. The feedback on the particle of
surrounding unsteady flow field, which contains informati
of the particle velocity at previous times~the momentum that
is transferred from particle to fluid cannot simply disappe
and is also not completely carried off by propagation
sound waves!, is ‘‘felt’’ by the particle as an additional push
in its original direction of motion. This results in the persi
tence of the velocity of the Brownian particle and gives
rough explanation of the long-time tail of the VACF. Th



d
n
is

n-

-

ti-

n

a
lu

-
c

of
ri

of
th
ed
e

re

he
tion

re-

i-
li-
rac-
rder
by

o
-
for

y-
of

he

c-

oc-

o-
er-

ng
o-
2.

le
ed
s a
al-
to
is
ull
ter-
en
-
e-
-
rix

2952 56H. J. H. CLERCX
random force in Eq.~2! is still Gaussian, but not uncorrelate
for different times due to cooperative effects of fluid motio
By applying Laplace transform techniques the VACF
found; it has the form

c~t!5kBT$b exp~b2t!erfc~bAt!

2a exp~a2t!erfc~aAt!%/@M ~b2a!#,

with

a5
9

4s12
~11 1

3 A528s!,

b5
9

4s12
~12 1

3 A528s!. ~3!

The coefficients5rs/r is the ratio between the particle de
sity rs and the fluid mass densityr. The dimensionless time
t is defined ast5ht/ra2[t/t0 . This result has been ob
tained by several authors, e.g., Widom@21# and Hinch@22#.
From Eq.~3! it can directly be concluded that the equipar
tion of energy is not satisfied:c(0)5kBT/M instead of
kBT/m. By including compressibility it can be shown that o
time scalestc.a/c!t0 ~with c the speed of sound! required
for sound waves to travel a distance of the order of the p
ticle radius, the VACF decreases from the equipartition va
kBT/m to kBT/M @23#. The long-time tail is easily found by
considering the limitt→`,

c~t→`!5~kBT/M !
4s12

36Ap

1

tAt
. ~4!

A different behavior of long-time tails of correlation func
tions is found for the angular velocity autocorrelation fun
tion (.t25/2) @24# and for the VACF of Brownian particles
in a harmonic potential (.t27/2), which is of interest for
particles in, for example, colloidal crystals@25#. The problem
of long-time tails is also studied from the point of view
fractional calculus~see the work of Mainardi and Tampie
@26# and references therein!.

A more suitable quantity from an experimental point
view is the time-dependent self-diffusion coefficient, wi
which the motion of Brownian particles can be characteriz
Two slightly different but closely related definitions of th
time-dependent self-diffusion coefficient exist, viz.,

Ds~ t,w![
1

6

d

dt
^Dr2~ t,w!&5E

0

t

c~ t0 ,w!dt0 ~5!

and

Ds~ t,w![
^Dr2~ t,w!&

6t

5E
0

t

c~ t0 ,w!dt02
1

t E
0

t

t0c~ t0 ,w!dt0 , ~6!

with ^Dr2(t,w)& the mean-square displacement, which is
function of the concentration of dispersed particles. The
sults reported in Ref.@13# are based on Eq.~5!. In this paper
.

r-
e

-

.

a
-

only the second definition will be used to investigate t
appearance of scaling. This expression is also the defini
that is employed in experimental measurements ofDs(t,w)
and in numerical simulations@8,9,11#. It is noteworthy that
when Eq.~6! shows scaling, then also Eq.~5! should show
scaling. The short-time self-diffusion coefficient can be
covered by considering the long-time limitDs(t→`)
5D0(121.83w).

The analytical calculation of the VACF for hydrodynam
cally interacting Brownian particles is much more comp
cated. As a first step time-dependent hydrodynamic inte
tions between spherical particles have to be analyzed in o
to calculate particle velocities. This can be accomplished
solving the Fourier transformed~with respect to time!
Navier-Stokes equations for the flow field surrounding tw
spherical particles@13#. No-slip boundary conditions are as
sumed. Subsequently, an analytical relation is necessary
the precise form of the VACF, including the effects of h
drodynamic interactions on the time-dependent velocities
the respective particles. We start with the definition of t
correlation matrix

c~v,v8!5F c tt~v,v8! c tr~v,v8!

c rt~v,v8! c rr ~v,v8!G , ~7!

where t and r denote translational and rotational, respe
tively. The submatrices represent c tt(v,v8)
5^U(v)U* (v8)&, c rr (v,v8)5^V(v)V* (v8)&, and
c tr(v,v8)5^U(v)V* (v8)&5c rt†(v,v8), where the
dagger stands for Hermitian conjugation.U(v) and V(v)
are the Fourier transforms of the velocity and angular vel
ity, respectively. The correlation matrix shown in Eq.~7!
could suggest decoupling of translational and rotational m
tions in each of the four submatrices when looked at sup
ficially. However, due to hydrodynamic interactions, stro
coupling can exist between translational and rotational m
tions. Consider a pair of spherical particles labeled 1 and
When particle 1 has a velocity parallel to the interpartic
axis, only a force parallel to the interparticle axis is exert
on particle 2 and no torque. However, when particle 1 ha
velocity perpendicular to the interparticle axis, a force par
lel to the velocity of particle 1 and a torque perpendicular
both the interparticle axis and the velocity of particle 1
exerted on particle 2. It is not surprising then that the f
hydrodynamic problem has to be solved in order to de
mine, for example, velocity correlation functions. It has be
shown by Clercx and Schram@13#, on the basis of a gener
alization of a fluctuation-dissipation theorem derived by B
deaux and Mazur@27#, that the following relation exists be
tween the Fourier transform of the correlation mat
c(v,v8) and the frequency-dependent friction matrixz(v),
which contains the full hydrodynamics:

c~v,v8!54pkBTd~v2v8!Re$@z~v!2 ivS#21%, ~8!

with i the imaginary unit Re$@z(v)2ivS#21% denoting the
real part of@z(v)2 ivS#21, andS a so-called mass-inertia
matrix, which has for a spherical particle the formStt5mI ,
Str5Srt50, andSrr 5 2

5 ma2I ~see@13#!. A relatively simple
expression for the Fourier transform ofc(v,v8) is obtained
by substituting Eq.~8! into the expression
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FIG. 1. Velocity autocorrelation function
f(t/tw) divided by its long-time decay
f(t/tw→`) for s51 and several volume frac
tions. The characteristic time is defined astw

5(123.77w)2/3t0 .
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c~ t,t1t0!5
1

4p2 E
2`

1`E
2`

1`

e2 ivteiv8~ t1t0!c~v,v8!

3dv dv8

5~kBT/p!E
2`

1`

eivt0 Re$@z~v!2 ivS#21%dv

[c~ t0!. ~9!

When we introduce a dimensionless frequencyv0
5a2rv/h and use the dimensionless timet, which was in-
troduced previously, Eq.~9! is simplified to

c~t!56pha~kBT/M !
4s12

9p E
0

`

cos~v0t!

3Re$@z~v0!2 iv0S̃#21%dv0 , ~10!

where it is already anticipated, by introducing the fac
6pha(kBT/M ), that only velocity autocorrelation function
are investigated. The mass-inertia matrixS is slightly modi-
fied; we now useS̃tt5 4

3 phasI and S̃rr 5 8
15pha3sI . The

matricesS̃tr and S̃rt remain zero. In obtaining Eq.~10! we
have used Re$@z(v0)2 iv0S̃#21%5Re$@z(2v0)
1 iv0S̃#21%. The single-particle result for the VACF@Eq.
~3!# follows directly from Eq.~10! by observing that for this
particular situation the matrixz(v0)2 iv0S̃ is diagonal and
by using

z tt~v0!56pha@11 1
2 ~12 i !A2v02 1

9 iv0#. ~11!

Translational motions of a single-spherical particle are co
pletely decoupled from rotational motions. This is not t
case when particle interactions are considered as expla
before.

We have studied the behavior of the correlation matrix
dilute suspensions where the volume fractionw!1. In this
case we have to take into account two-particle hydrodyna
interactions only. Using the simplest form of the pair dist
r

-

ed

r

ic

bution function,g(R)50 for uRu,2a andg(R)51 for uRu
>2a with R the interparticle distance vector anda the par-
ticle radius, we can determine an expression for the ensem
average of the correlation matrix. Actually, it is a configur
tion average, and up to orderw it can be written as
^c(t)&c5f0(t)1wf1(t), where ^ &c denotes an averag
over all configurations of theN particles.f0(t) is the cor-
relation matrix for a Brownian particle in the limit of a
infinitely diluted suspension andwf1(t) is the correction
due to the two-particle hydrodynamic interactions. T
VACF is now some particular component of^c(t)&c ,

^c i i
t t~ t0!&c5^^Ui~ t !Ui~ t1t0!&&c[f~ t0!. ~12!

For convenience we finally write for the VACF@see Eq.~9!#

f~t!5f0~t!1wf1~t!

5~kBT/M !
4s12

9p
$c0~t!1wc1~t!%. ~13!

For t→` we expect that the following relation should exi
~see also@12#!:

f~t→`!5~kBT/M !
4s12

36Ap

1

tAt
~11Cw!, ~14!

whereC, which is a function ofs5rs /r, has to be deter-
mined numerically. One of the scaling scenarios employe
this study is based on scaling of the VACF with this expre
sion of the long-time tail.

The approach to determine the friction matrix is outlin
in detail in Ref.@13#. Employing this method in order to find
the lowest-order modification of the long-time tail results
C523.7760.04 whens51. More generally, it appears tha
for 0<s<2, C523.7710.48(s21) with an error margin
of approximately 1%, which is due to errors in extrapolatio
It agrees reasonably well with the analytical result obtain
by Milner and Liu@12#, C523.7510.5(s21), and is con-
sistent with their argument that higher-order multipolar c
rections do not lead to corrections of the value based o
second-order reflection calculation. It is an open quest
how three- and many-body interactions will modify th
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FIG. 2. ~a! Time-dependent self-diffusion co
efficient divided by its asymptotic limit
Ds(t/tw)/Ds for s51. The short-time self-
diffusion coefficient isDs5D0(121.83w). The
characteristic time is defined astw5(1
23.77w)2/3t0 . The drawn line is the single-
particle result.~b! Time-dependent self-diffusion
coefficient divided by its asymptotic limit
Ds(t/tw)/Ds for s52. The short-time self-
diffusion coefficient isDs5D0(121.83w). The
characteristic time is defined astw5(1
23.31w)2/3t0 . The drawn line is the single-
particle result.
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VACF and its long-time tail. Such an analysis is in princip
possible when the method presented in Ref.@13# is combined
with a method to calculate three-particle hydrodynamic
teractions. For the quasistatic case such an analysis has
carried out@28#, but it might be expected that for transie
hydrodynamic interactions a numerical analysis of the th
retical results is quite expensive.

III. SCALING OF THE TIME-DEPENDENT
SELF-DIFFUSION COEFFICIENT

Following both the theoretical approach by Milner a
Liu @12# and the numerical study by Lowe and Frenkel@11#,
we have calculated the VACFf~t! @Eq. ~13!# divided by the
theoretical one-particle long-time result@c(t→`), Eq. ~4!#,
i.e., we have defined a functionT(t,w) by

T~t,w!5~4/Ap!tAt$c0~t!1wc1~t!%. ~15!
-
een

-

In the limit t→` we obtainT(t→`,w)511Cw, with C
523.7710.48(s21). By introducing a new characteristi
time instead oft0 , viz., tw5(11Cw)2/3t0 , it is possible to
show some amount of scaling of the VACF for short a
intermediate times and small volume fractions~see Fig. 1!.
Scaling for large times is implicitly satisfied due to the de
nition of tw . For small volume fractions (w<0.1) scaling is
comparable with the numerical results presented by Lo
and Frenkel, but for higher volume fractions the discrepan
with their results, which implicitly include many-particle in
teractions, starts to grow, which is an indication that thr
and many-particle interactions will also give a significa
contribution to the VACF on small- and intermediate-tim
scales. From the present calculations it is not possible ye
indicate a time scale beyond which effective fluid behav
will occur. Large deviations from scaling forw>0.15 always
occur on time scales of ordert0 . Although it is not clear to
what amount these results are changed by including th
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FIG. 3. ~a! Scaling of the time-dependent sel
diffusion coefficient divided by its asymptotic
limit Ds(t/tw)/Ds for s51. The short-time self-
diffusion coefficient isDs5D0(121.83w). The
characteristic time is defined astw5(1
23.77w)2/3t0 . The drawn line is the single-
particle result.~b! Scaling of the time-dependen
self-diffusion coefficient divided by its
asymptotic limit Ds(t/tw)/Ds for s52. The
short-time self-diffusion coefficient isDs5D0(1
21.83w). The characteristic time is defined a
tw5(123.31w)2/3t0 . The drawn line is the
single-particle result.
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particle interactions, it seems that this observation supp
the conclusion by Lowe and Frenkel quoted earlier that
effective fluid behavior exists at time scales of ordert0 .

The scaling scenario for the time-dependent self-diffus
coefficient is based ontw and normalization is carried ou
with the Batchelor result for the short-time self-diffusion c
efficient Ds5D0(121.83w). In Fig. 2 the results of
D(t/tw)/Ds on short- and intermediate-time scal
(0<tw<6! are shown for two values ofs: in Fig. 2~a! for
s51 and in Fig. 2~b! for s52 ~the particle density is twice
as large as the fluid density!. This particular choice of time
scale in the figures is motivated by the possibility to comp
the scaled curves with those obtained numerically by Lo
and Frenkel@11# and the experimental data by Kao, Yod
and Pine@5#. The small deviation from perfect scaling fo
tw.6 is due to the fact that the rescaled time is chosen s
that the velocity autocorrelation functions collapse asym
totically for all w, resulting in a small deviation from scalin
of the VACFs for short and intermediate times. This effec
ts
o

n

e
e

ch
-

s

also found and discussed by Lowe and Frenkel. As a con
quence, a small vertical shift inD(t/tw)/Ds for largetw will
occur for the present calculations due to a difference of
integrals when calculatingD(t/tw)/Ds by using Eq.~6! @see
Fig. 1, whereT(t,w)>T(t,w50)#. Despite this small dis-
crepancy, reasonable scaling is observed over a large-
interval. This is shown in Fig. 3, whereD(t/tw)/Ds for
s51 @Fig. 3~a!# and s52 @Fig. 3~b!# is plotted for 0.01
<tw<200. The logaritmic scale fortw facilitates a compari-
son with numerical data by Ladd@9# and experimental result
reported by Zhuet al. @2#. Up to volume fractionsw50.15,
the scaling is comparable with the other numerically a
experimentally obtained curves. The time-dependent s
diffusion coefficient has been calculated for several value
s ranging from 0 to 2. All data obtained by the propos
analytical procedure can be collapsed onto a master c
with a comparable accuracy as shown fors51 and 2, and
scaling seems to be better whens increases. In the limit
s→0 scaling is not perfect, but the observed lack of scal
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FIG. 4. ~a! Scaling based on a best-fit proce
dure of the time-dependent self-diffusion coef
cient divided by its asymptotic limit
Ds(t/tw)/Ds for s51. The short-time self-
diffusion coefficient isDs5D0(121.83w). The
drawn line is the single-particle result.~b! Scaling
based on a best-fit procedure of the tim
dependent self-diffusion coefficient divided by i
asymptotic limit Ds(t/tw)/Ds for s52. The
short-time self-diffusion coefficient isDs5D0(1
21.83w). The drawn line is the single-particle
result.
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is not large. This slight discrepancy is possibly due to in
curacies in the underlying calculations to obtainc(v,v8)
@Eq. ~8!# and in performing Fourier transforms that appa
ently require a higher resolution and accuracy. Howeve
should not be ruled out beforehand that some physical ex
nation exists for this observation.

On the other hand, a best-fit procedure, necessary bec
a small vertical shift was observed in calculatin
D(t/tw)/Ds from Eq. ~6!, has been used to find an optim
rescaled time in order that the long-time part of the tim
dependent diffusion coefficients for the different volum
fractions collapse onto one curve. Scaling in the long-ti
limit is achieved by introducing a larger effective viscos
~or, equivalently, a smaller value fortw! than in the case
where we match the long-time tail of the VACF with th
single-particle result. As a consequence, scaling for sm
times is not perfect but still satisfactory. In Figs. 4~a! and
4~b! we have plotted the time-dependent diffusion coeffici
for this alternative scaling scenario fors51 and 2, respec-
tively. From these results it can be concluded that scalin
-

-
it
la-

use
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e
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t

is

present for small and intermediate volume fractions. F
higher volume fractions (w>0.2) the theoretical analysis o
transient hydrodynamic interactions should be extended
order to include three- and probably many-particle inter
tions.

IV. CONCLUSION

Based on a calculation of retarded hydrodynamic inter
tions between pairs of particles, it has been shown t
volume-fraction-dependent corrections to the single-part
correlation functions can be determined. An important res
is the calculation of the volume-fraction-dependent mod
cation of the long-time tail from a calculation based on t
method expounded in Ref.@13#. The result is consistent with
the expression obtained by Milner and Liu@12#. It has also
been shown that it is possible to collapse the curves of
time-dependent diffusion coefficients onto the single-parti
curve for volume fractions up tow50.15. For higher volume
fractions scaling is not perfect but still present~up to w
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50.25!. However, it might be expected that additional co
rections to the correlation functions, due to three-particle
drodynamic interactions, will improve scaling; for that re
son a discussion of results forw>0.2 is postponed unti
three-particle contributions can be included. In this contex
is worthwhile to mention that the apparent lack of scaling
the results of the time-dependent self-diffusion coeffici
for w>0.25, which are shown in Ref.@13#, is partly due to
the assumption that corrections ofO(w2) would not be very
important. This appears to be, however, an incorrect con
sion. For s51 the present theoretical results support
experimental data and simulation results reported in rec
years@2,5,7,9,11#. The results for other values ofs between
0 and 2 support the idea that scaling also exists for syst
where the density of the particles is not the same as the
density. It is not clear if scaling remains important in t
case of a high particle to fluid density mismatch (s@1). The
highers, the more expensive~from a computational point o
view! the calculations are to obtain the VACF and tim
dependent diffusion coefficients. Finally, it is interesting
note that this full theoretical analysis, where sufficient m
tipoles are taken into account to obtain computationally c
verged values for the time-dependent diffusion coefficie
r,

v

v
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it

t

u-
e
nt

s
id

-
-
s

and VACFs ~including long-time tails!, disagrees with an
analysis presented by Cichocki and Felderhof@29#. They
claimed that the long-time tail of the VACF of a particle in
colloidal suspension should be independent of volume fr
tion. Our analysis strongly supports the conclusion from
cent experiments and numerical simulations that in addit
to the time-dependent diffusion coefficients also the lon
time tails of the VACF of colloidal particles depend on th
volume fraction. Furthermore, the present results are con
tent with the analysis of the volume-fraction-depende
modification of the long-time tail of the VACF of colloida
particles reported by Milner and Liu@12#.

An important conclusion of this work is that the theore
cally obtained time-dependent diffusion coefficient shows
ready scaling for 0<s<2 when two-particle hydrodynamic
interactions, in combination with the simplest pair distrib
tion function for obtaining configurational averages, are
cluded in the calculation of the VACF.
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