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Scaling of transient hydrodynamic interactions in hard sphere suspensions
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Analyses of retarded hydrodynamic interactions between pairs of spheres, computed in Fourier space over
the full frequency range, have been performed to investigate scaling of the time-dependent self-diffusion
coefficientD4(t,¢). It appears that up to intermediate volume fractiogs<(Q.15) D(t,¢) shows scaling
behavior when both the characteristic times appropriately rescaled arldg(t,¢) is normalized by the
short-time self-diffusion coefficient of the suspensg=Dy(1—1.83p). The rescaled characteristic time is
based on matching of the long-time tail of the velocity autocorrelation function with the single-particle result.
Scaling is observed for a range of particle to fluid density rafios0<o<2, o= ps/p, with p the particle
density andp the fluid mass density Scaling for higher volume fractions, which is already present when the
characteristic time is computed by optimal fitting, might be improved by including three-particle hydrodynamic
interactions. The present results support the conclusion that modification of correlation functions in hard sphere
suspensions, in order to include effects of two-particle hydrodynamic interactions, is already sufficient to show
the existence of scaling @4(t,¢). [S1063-651X97)02909-1

PACS numbgs): 47.15.Gf, 05.40tj, 82.70.K]j

[. INTRODUCTION the transport of light through a suspension by means of a
diffusive procesd1], has opened the way to measurements
A colloidal suspension is a system of small particles im-of particle dynamics on very-short-time scales. On these time
mersed in a fluid. The characteristic radiasof the sus- scales the particle dynamics is still nondiffusive. Probing
pended particles is generally much larger than the lengtlparticle dynamics on such short-time scales is particularly
scale associated with the solvent molecules. This allows thenportant because particle interactions are then dominated
application of continuum theories to describe the fluid mo-by transient hydrodynamics and it allows the study of long-
tion (usually the Navier-Stokes equations for incompressibldime tails of velocity autocorrelation functions in mesoscopic
flows) in order to study the hydrodynamic interactions hard sphere systems.
among the suspended particles. On the other hand, the par- One of the most remarkable experimental observations on
ticle radius is still small enough so that the Reynolds numbethe short-time dynamics of colloidal suspensions in recent
Re is negligible or, in terms of characteristic quantities as thgpast is the scaling behavior of the time-dependent self-
average particle velocity and the kinematic viscosity of the diffusion coefficientD4(t,¢), where ¢ denotes the volume
fluid (v): Re=Ua/v<<1l. When this condition is satisfied it fraction of dispersed particles. Ztet al. [2] have reported
is allowed to linearize the Navier-Stokes equations, whicrexperimentally measured time-dependent diffusion coeffi-
simplify analytical solution procedures substantially. cients, in the regime where the hydrodynamic interactions
A better understanding of the rheological behavior of col-are transient, by employing DWS techniques. They have
loidal suspensions is of considerable practical interest, espshown, by introducing suitable scaling parameters, that all
cially for industrial and engineering applications. Examplescurves ofDg(t,¢) could be collapsed onto a single master
can be found in the food processing industry, paint industrygurve. The scaling procedure proposed by £hal. is based
etc. Particular model suspensions of hard spheres or rodliken rescaling the characteristic timg=aZ%p/» (with p the
particles, immersed in a Newtonian fluid, with specific inter-fluid mass densityby using the suspension shear viscosity
action characteristics among the particles are extremely suits(¢) instead of the fluid shear viscosity[resulting in a new
able to carry out experiments aimed at fundamental researchharacteristic timer,= a’pln(¢)] and normalizing the
such as investigations of phase transition phenomena or theme-dependent self-diffusion coefficient by its long-time
short-time particle dynamics in the prediffusive regime. Ex-limit Ds=Dy(1— 1.83p) [3] (the long-time limit should be
perimental, numerical, and theoretical studies of the dynamiread here as time scales much longer thgn but short
cal and structural behavior of suspensions are often based @mough to keep the particle configuration effectively un-
such model systems. By means of light-scattering experiechanged For 7(¢) they have used a theoretical result for the
ments the dynamics of the particles in the fluid and the struchigh-frequency viscosity of a suspension of hard sphigtes
ture of the suspension can be studied. Some important aSuch a scaling basically means that the dynamics of particles
pects of the study of suspension dynamics are measuremeritsthe suspension is apparently the same as if the particles are
of the (short-time diffusivity of the particles and elucidating moving like single particles in an effective fluid with the
the role of hydrodynamic interactions in modifying the self- suspension viscosity.
diffusion of a tagged particle. The recent development of Since the interesting observations by Zhu and co-workers
diffusing wave spectroscopyDWS), a dynamic light- some more experiments have been carried[buf7]. Kao,
scattering technigue that exploits the multiple-scatteringrodh, and Ping5] introduced some more scaling recipes
characteristics of dense suspensions in order to approximaghowing that the precise scaling scenario is not extremely
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important; all experimental data could reasonably well becated than expected on the basis of the solution of the Lange-
collapsed onto a master curve with three slightly differentvin equation

scaling procedures. They also claimed that scaling sets in on

much smaller timest&0.17) than expected on the basis of du(t)

the propagation of hydrodynamic interactions, which is ex- m— = ~¢U+R(), @
pected to occur on time scales comparablergqthe time

scale associated with the diffusion of vorticity over a dis- it U(t) the velocity of the Brownian particlem its
tance comparable with the particle radiusvidence for scal- mass, {=6m7a the friction coefficient for spherical
ing is _also_ supported by results from numerical simulat_ions articies andR(t) a random force exerted by the fluid
Investigations by means of molecular-dynamics techn'que%olecule’s during collisions with the Brownian particle
[8] and by lattice Boltzmann method3,9—-11 have been he random force is assumed to be Gaussian, (R(t)) '

carried out to measure the scaling properties of ideal har_0 h denot bl Furth
sphere suspensions in more detail. Lowe and Frefikgl — “; where() denotes an ensemble average. Furthermore,

have reported numerical simulations in order to study theVhite-noise statistics is assumed, i.dRi(t)R;(t+to))
scaling behavior of the velocity autocorrelation function =2¢ksTdij&(to), with kg the Boltzmann constant and
(VACF) (t,¢) of a tagged Brownian particle in a suspen- T the absolute temperature. The assumption of white-
sion. The conclusion of that investigation is that effectivenoise statistics means that successive collisions of fluid mol-
fluid behavior only occurs on a time scale slightly longerecules with the Brownian particle are uncorrelated. From
than 7, (t=47,), contradicting the observations by Kao, Ed. (1) it is possible to derive in a straightforward manner
Yodh, and Pine. Theoretical results aimed at explaining th@n explicit relation for the VACF. The result ig(to)
scaling of Dg(t,¢) and ¢(t,) or aimed at showing that =(U(t)U(t+ty))=(kgT/m)exp(—{ty/m).

scaling could be obtained on the basis of hydrodynamics are The classical Langevin approach described above appears
rare. Milner and Liu12] have derived an expression for the to be sufficient when the behavior of Brownian particles is
concentration dependence of the long-time tail of the VACF studied on long-time scales, i.e., on time scales where the
They have shown, by analyzing the low-frequency behavioi/ACF has already decayed. On shorter time scales a more
of the hydrodynamic interactions, that the long-time tail of adequate description of hydrodynamics has to be used. This
the VACF in suspensions looks like the long-time tail of ajnsjght started to grow some 30 years ago with the advent of
single particle in a fluid with the suspension viscosity. Thecompyter simulations of the behavior of fluids at the molecu-
expression obtained by Milner and Liu is, however, only|a; |eye|. Alder and Wainwrighf17,18 found in computer
valid for times much larger than the Brownian relaxat'onexperiments, where they simulated the motion of a tagged

. _ 2 .
g?me Tl(é?eaaﬁg ?s%lglcctx g-ndai‘%rl]er%rﬁ(lﬁlgar\w/eexng%mnetgrgg;['gns particle in a hard sphere fluid, that the VACF of that tagged
P ysl wo-parti Y y Ic | : particle has a long-time tail resulting in a surprisingly slow

based on a multipole expansion of the flow field in Fourier . —ap .
space(with respect to timgin terms of vector spherical har- 4€€@y 0f the VACF, viz.j(to) =t, ™ whenty> 7o, instead
monics, which is valid over the complete frequency domain©f Showing an exponential decay. Alder and Wainwright
With this particular method it is possible to study the effectsWere also able to explain the long-time tail for three-
of retarded hydrodynamic interactions on particle dynamicglimensional hard sphere fluids by considering the coopera-
for all times, thus also on the small- and intermediate-timetive effect from the surrounding fluid molecules, which can
scales probed during the experiments by Ztwl.[2] and  be described by macroscopic hydrodynamiit3,18 (see
Kao, Yodh, and Pin¢5]. The analytical results in Ref13]  also the works of Zwanzig and Bixdi9] and Casg20]).
have been presented in terms of frequency-dependent conihe dynamics of a Brownian particle is in fact governed by
ponents of the mobility matrix, and a few results of the time-a combination of forces and is appropriately described by the
dependent self-diffusion coefficient have been shown. N&o-called Stokes-Boussinesq equation

scaling analysis oD(t,¢) and #(t,¢) has been made in

that study. Some other approaches have been reported in the  du(t) t 1 dU(r)
literature [14,15, but have the disadvantage that they are M T=—§U(t)—6a2\/77p7] f — 4 dr
only valid for some particular frequency range or time do- o yt—7 H7

main. An overview on the topic of scaling of the time- +R(1) )
dependent self-diffusion coefficient can be found in the re- '

view paper by Espgui and_Zmiga[lG]_ . with M=m+ 3m,, the effective mass associated with both
In Sec. Il an outline is given of the procedure to determiney, particle mass and the masg of the displaced fluid
the velocity correlation functions, including the effects Ofduring particle motion. The second term on the right-hand
hydrodynamic interactions on these correlation functions,Side of Eq.(2) is the m.emory term and is associated with a
Results for the time-dependent self-diffusion coefficient as gq5 4o viscous force. This contribution is also known as the
function of volume fraction are presented in Sec. Ill, includ- g ccat history force. The feedback on the particle of the
|ngdarr1]'analy5|s Sf scaling pased En tWO. scahn? scer:jan.o.s. §'urrounding unsteady flow field, which contains information
end this paper by summarizing the main results and giving ¢ e particle velocity at previous timéthe momentum that

conclusion in Sec. IV. is transferred from particle to fluid cannot simply disappear
and is also not completely carried off by propagation of
sound waveg is “felt” by the particle as an additional push
in its original direction of motion. This results in the persis-
It has already been known for a long time that the dynamtence of the velocity of the Brownian particle and gives a
ics of a Brownian particle in a viscous fluid is more compli- rough explanation of the long-time tail of the VACF. The

Il. DERIVATION OF THE VELOCITY CORRELATION
MATRIX
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random force in Eq(2) is still Gaussian, but not uncorrelated only the second definition will be used to investigate the
for different times due to cooperative effects of fluid motion. appearance of scaling. This expression is also the definition
By applying Laplace transform techniques the VACF isthat is employed in experimental measurement®gft, ¢)

found; it has the form and in numerical simulationg,9,11. It is noteworthy that
when Eq.(6) shows scaling, then also E¢p) should show
P(1)=kgT{B exp(27)erfo B\/7) scaling. The short-time self-diffusion coefficient can be re-
B 5 B covered by considering the long-time limiDg(t— o)
o expla?r)erfd a D HIM(B—a)], —Do(1—1.83p).

The analytical calculation of the VACF for hydrodynami-
cally interacting Brownian particles is much more compli-
cated. As a first step time-dependent hydrodynamic interac-

with

a=,—" (1+3v5—-80), tions between spherical particles have to be analyzed in order
ot to calculate particle velocities. This can be accomplished by
solving the Fourier transformedwith respect to timg
— 1-1/5-80). 3 Navier-Stokes equations for the flow field surrounding two
p 4o+2 (1-3 ) @ spherical particle§13]. No-slip boundary conditions are as-

o ] ] ) sumed. Subsequently, an analytical relation is necessary for
The coefficiento=ps/p is the ratio between the particle den- the precise form of the VACF, including the effects of hy-
sity ps and the fluid mass densify The dimensionless time  grodynamic interactions on the time-dependent velocities of

7is defined asr= nt/pa’=t/r,. This result has been ob- the respective particles. We start with the definition of the
tained by several authors, e.g., Wid¢81] and Hinch[22].  correlation matrix

From Eq.(3) it can directly be concluded that the equiparti-
tion of energy is not satisfied#(0)=kgT/M instead of v we) ¢ (o o)
kgT/m. By including compressibility it can be shown that on Pow,0')=| ' rr N (7
. ) : Y (w,0) " (0o0')
time scales.=a/c<< 1y (with ¢ the speed of soundequired
f_or soun_d waves to travel a distance of the order 9f the pargheret andr denote translational and rotational, respec-
ticle radius, the VACF decreases_ from Fh_e eqw_partltlon Valueiively. The submatrices represent o (w,o’)
kBT/m to kgT/M [23]. The long-time tail is easily found by =(U(0)U* (), " (0,0")=(Q(0)Q* ('), and
considering the limitr— oo, lﬁtr(w,w’)=<U(w)ﬂ*(w')>=lﬂrtT(w,w'), where the
dagger stands for Hermitian conjugatidd(w) and Q(w)
4o+2 i (4) are the Fourier transforms of the velocity and angular veloc-
367 T ity, respectively. The correlation matrix shown in EQ)
could suggest decoupling of translational and rotational mo-
A different behavior of long-time tails of correlation func- tions in each of the four submatrices when looked at super-
tions is found for the angular velocity autocorrelation func-ficially. However, due to hydrodynamic interactions, strong
tion (=7 %9 [24] and for the VACF of Brownian particles coupling can exist between translational and rotational mo-
in a harmonic potential# 7~ "%, which is of interest for tions. Consider a pair of spherical particles labeled 1 and 2.
particles in, for example, colloidal crystd®5]. The problem  When particle 1 has a velocity parallel to the interparticle
of long-time tails is also studied from the point of view of axis, only a force parallel to the interparticle axis is exerted
fractional calculugsee the work of Mainardi and Tampieri on particle 2 and no torque. However, when particle 1 has a
[26] and references thergin velocity perpendicular to the interparticle axis, a force paral-
A more suitable quantity from an experimental point of lel to the velocity of particle 1 and a torque perpendicular to
view is the time-dependent self-diffusion coefficient, with both the interparticle axis and the velocity of particle 1 is
which the motion of Brownian particles can be characterizedexerted on particle 2. It is not surprising then that the full
Two slightly different but closely related definitions of the hydrodynamic problem has to be solved in order to deter-
time-dependent self-diffusion coefficient exist, viz., mine, for example, velocity correlation functions. It has been
1 g shown by Clercx and Schrafd3], on the basis of a gener-
_ t alization of a fluctuation-dissipation theorem derived by Be-
Dit.p)=g gi(Ari(te)= fo Y(toe)dlo O geaux and Mazuf27], that the following relation exists be-
tween the Fourier transform of the correlation matrix
and U(w,w") and the frequency-dependent friction matf{xw),
which contains the full hydrodynamics:
(Ar?(t,@))

Do(to)=—4— P w,0')=47keTo(w— 0" )RE[Lw)—i0S] Y, (8)

P(1—»)=(kgT/M)

with i the imaginary unit R§/(w)—iwS] 1} denoting the
real part of[ {(w) —iwS] ™!, andS a so-called mass-inertia
matrix, which has for a spherical particle the fo8f=ml,
with (Ar?(t,¢)) the mean-square displacement, which is aS"=S"=0, andS"=2ma?l (see[13]). A relatively simple
function of the concentration of dispersed particles. The reexpression for the Fourier transform ¢ w,w’) is obtained
sults reported in Ref13] are based on E@5). In this paper by substituting Eq(8) into the expression

t 1t
=J lﬂ(to#’)dto_TJ tod(to,@)dty, (6)
0 0
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FIG. 1. Velocity autocorrelation function
¢(t/7,) divided by its long-time decay
¢(t/7,—») for =1 and several volume frac-
tions. The characteristic time is defined ag
=(1-3.77p)%7,.

T(7,9)

o-itgie’ (0 bution function,g(R)=0 for |R|<2a andg(R)=1 for |R|
Yfw,0) =2a with R the interparticle distance vector aadhe par-
ticle radius, we can determine an expression for the ensemble
Xdw do’ average of the correlation matrix. Actually, it is a configura-
tion average, and up to ordep it can be written as
. o . _ (Y(7))c= po(7) + 0 p1(7), where( ). denotes an average
= (kgT/m) fﬁm e Re{[{(w) ~iwS] }do over all configurations of thél particles.¢(7) is the cor-
relation matrix for a Brownian particle in the limit of an
=yfty). (9 infinitely diluted suspension angeq(7) is the correction
due to the two-particle hydrodynamic interactions. The
When we introduce a dimensionless frequenay, VACF is now some particular component @i 7)),
=a’pw/n and use the dimensionless timewhich was in-

Y(tt+tg) =

troduced previously, Eq9) is simplified to (Y (to))e=((Ui(OU;(t+10)))c= (to). (12
P For convenience we finally write for the VA(Bee Eq(9)]
o- ]
Y1) =6mnalkgT/IM) —5— fo Cog wqT) H(7)=po(7)+ @ pi(7)
N~ 4o+2
XRe{[f(‘%)"‘“oS] }dwo, (10 =(kgT/M) —{'r/fo(T)+<Pl//1(T)}- (13

where it is already anticipated, by introducing the factorpor »— o we expect that the following relation should exist
67 na(kgT/M), that only velocity autocorrelation functions (see alsd12]):

are investigated. The mass-inertia matixs slightly modi-
fied; we now useS“—3myaaI and S"= & wpadal. The
matricesS" and S remain zero. In obtaining Eq10) we

have used REL(wo) —i w0S] ™ 1} =Rel[(— wo)

H(r—x)= (kBT/M) (1+C¢), (19

o+2
ol
whereC, which is a function ofo=p./p, has to be deter-

+iweS] ™1}, The single-particle result for the VACFEQ. . . / . .
. : . mined numerically. One of the scaling scenarios employed in
(3)] follows directly from Eq.(10) by observing that for this this study is based on scaling of the VACF with this expres-

particular situation the matri(wo) —iweS is diagonal and  sjon of the long-time tail.

by using The approach to determine the friction matrix is outlined
in detail in Ref,[13]. Employing this method in order to find
{Mwo)=6mna[1+35(1-i)V2wo—35iwg]l. (11)  the lowest-order modification of the long-time tail results in
C=—3.77:0.04 wheno=1. More generally, it appears that
Translational motions of a single-spherical particle are comfor 0<o<2, C=—23.77+0.48(c— 1) with an error margin
pletely decoupled from rotational motions. This is not theof approximately 1%, which is due to errors in extrapolation.
case when particle interactions are considered as explainddagrees reasonably well with the analytical result obtained
before. by Milner and Liu[12], C=—3.75+0.5(c— 1), and is con-
We have studied the behavior of the correlation matrix forsistent with their argument that higher-order multipolar cor-
dilute suspensions where the volume fractiprg1. In this  rections do not lead to corrections of the value based on a
case we have to take into account two-particle hydrodynamisecond-order reflection calculation. It is an open question
interactions only. Using the simplest form of the pair distri- how three- and many-body interactions will modify the
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FIG. 2. (a) Time-dependent self-diffusion co-

efficient divided by its asymptotic limit
Dg(t/7,)/Dg for o=1. The short-time self-
diffusion coefficient isD;=Dy(1—-1.83p). The
characteristic time is defined asr,=(1

(a) —3.779)?®r,. The drawn line is the single-
particle result(b) Time-dependent self-diffusion
coefficient divided by its asymptotic limit
Dy(t/7,)/Dg for o=2. The short-time self-
diffusion coefficient isDg=D(1—1.83p). The
characteristic time is defined asr,=(1
—3.31p)?37,. The drawn line is the single-
particle result.

g

>

3

(b) T

VACF and its long-time tail. Such an analysis is in principle In the limit 7— we obtainT(7—~,¢p)=1+C¢p, with C
possible when the method presented in RE8] is combined =-—-3.77+0.48(c—1). By introducing a new characteristic
with a method to calculate three-particle hydrodynamic in-time instead ofrg, viz., T¢=(1+C(p)2/37'0, it is possible to
teractions. For the quasistatic case such an analysis has begfbw some amount of scaling of the VACF for short and
carried out[28], but it might be expected that for transient jntermediate times and small volume fractiogsee Fig. 1
hydrodynamic interactions a numerical analysis of the theoscaling for large times is implicitly satisfied due to the defi-

retical results is quite expensive. nition of 7,,. For small volume fractions¢<0.1) scaling is
comparable with the numerical results presented by Lowe
I1l. SCALING OF THE TIME-DEPENDENT and Frenkel, but for higher volume fractions the discrepancy
SELF-DIFFUSION COEFFICIENT with their results, which implicitly include many-particle in-

. ) ) teractions, starts to grow, which is an indication that three-
_ Following both the theoretical approach by Milner and gng many-particle interactions will also give a significant
Liu [12] and the numerical study by Lowe and FrenKel],  ,ntribytion to the VACF on small- and intermediate-time
we have calculated the VACH(7) [Eq. (13)] divided by the  sca1e5. From the present calculations it is not possible yet to
fcheoretlcal one—p_artlcle Iong-pme resfili(r—c), Eq. (4] indicate a time scale beyond which effective fluid behavior
.e., we have defined a function(7,¢) by will occur. Large deviations from scaling fgr=0.15 always
occur on time scales of ordey,. Although it is not clear to
T(T,(p)=(4/\/;) T\/;{l,bo(T)-i-(p(/fl(T)}. (15 what amount these results are changed by including three-
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o
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Dy(t/r,)/Ds

o
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02 FIG. 3. (a) Scaling of the time-dependent self-
diffusion coefficient divided by its asymptotic
limit Dg(t/7,)/Dg for o=1. The short-time self-
diffusion coefficient isD;=Dy(1—-1.83p). The
characteristic time is defined asr,=(1
(a) " —3.779)?*7y,. The drawn line is the single-
particle result(b) Scaling of the time-dependent
self-diffusion  coefficient divided by its
asymptotic limit D(t/7,)/Ds for o=2. The
short-time self-diffusion coefficient iD;=Dg(1

i —1.83p). The characteristic time is defined as
7,=(1-3.31p)**7,. The drawn line is the
single-particle result.

g
A
=
=
0.01 0.1 1 10 100
(b) 7

particle interactions, it seems that this observation supportalso found and discussed by Lowe and Frenkel. As a conse-
the conclusion by Lowe and Frenkel quoted earlier that najuence, a small vertical shift iD(t/,)/D for large 7, will
effective fluid behavior exists at time scales of oregr occur for the present calculations due to a difference of the
The scaling scenario for the time-dependent self-diffusiorintegrals when calculatin®(t/7,)/D by using Eq.(6) [see
coefficient is based om, and normalization is carried out Fig. 1, whereT(t,¢)=T(t,¢=0)]. Despite this small dis-
with the Batchelor result for the short-time self-diffusion co- crepancy, reasonable scaling is observed over a large-time
efficient Dg=D(1—-1.83p). In Fig. 2 the results of interval. This is shown in Fig. 3, wher®(t/7,)/Dg for
D(t/7,)/Ds on short- and intermediate-time scaleso=1 [Fig. 3@] and o=2 [Fig. 3b)] is plotted for 0.01
(0=r,=<6) are shown for two values af: in Fig. 2@ for =~ <7,<200. The logaritmic scale for, facilitates a compari-
o=1 and in Fig. 2b) for =2 (the particle density is twice son with numerical data by Lad8] and experimental results
as large as the fluid densjtyThis particular choice of time reported by Zhwet al. [2]. Up to volume fractiongp=0.15,
scale in the figures is motivated by the possibility to comparehe scaling is comparable with the other numerically and
the scaled curves with those obtained numerically by Loweexperimentally obtained curves. The time-dependent self-
and Frenkel11] and the experimental data by Kao, Yodh, diffusion coefficient has been calculated for several values of
and Pine[5]. The small deviation from perfect scaling for o ranging from 0 to 2. All data obtained by the proposed
7,=6 is due to the fact that the rescaled time is chosen sucanalytical procedure can be collapsed onto a master curve
that the velocity autocorrelation functions collapse asympwith a comparable accuracy as shown éor1 and 2, and
totically for all ¢, resulting in a small deviation from scaling scaling seems to be better whenincreases. In the limit
of the VACFs for short and intermediate times. This effect iSoc— 0 scaling is not perfect, but the observed lack of scaling
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) result.
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is not large. This slight discrepancy is possibly due to inacpresent for small and intermediate volume fractions. For
curacies in the underlying calculations to obtalfw,w’) higher volume fractions£=0.2) the theoretical analysis of
[Eqg. (8)] and in performing Fourier transforms that appar-transient hydrodynamic interactions should be extended in
ently require a higher resolution and accuracy. However, ibrder to include three- and probably many-particle interac-
should not be ruled out beforehand that some physical expldions.
nation exists for this observation.

On the other hand, a best-fit procedure, necessary because
a small vertical shift was observed in calculating
D(t/7,)/Ds from Eq. (6), has been used to find an optimal ~ Based on a calculation of retarded hydrodynamic interac-
rescaled time in order that the long-time part of the time-tions between pairs of particles, it has been shown that
dependent diffusion coefficients for the different volumevolume-fraction-dependent corrections to the single-patrticle
fractions collapse onto one curve. Scaling in the long-timecorrelation functions can be determined. An important result
limit is achieved by introducing a larger effective viscosity is the calculation of the volume-fraction-dependent modifi-
(or, equivalently, a smaller value far,) than in the case cation of the long-time tail from a calculation based on the
where we match the long-time tail of the VACF with the method expounded in R€fL3]. The result is consistent with
single-particle result. As a consequence, scaling for smalhe expression obtained by Milner and Lil2]. It has also
times is not perfect but still satisfactory. In Figgapand been shown that it is possible to collapse the curves of the
4(b) we have plotted the time-dependent diffusion coefficientime-dependent diffusion coefficients onto the single-particle
for this alternative scaling scenario for=1 and 2, respec- curve for volume fractions up tp=0.15. For higher volume
tively. From these results it can be concluded that scaling ifractions scaling is not perfect but still presefp to ¢

IV. CONCLUSION
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=0.25. However, it might be expected that additional cor-and VACFs (including long-time taily disagrees with an
rections to the correlation functions, due to three-particle hyanalysis presented by Cichocki and Felderfi2®]. They
drodynamic interactions, will improve scaling; for that rea- claimed that the long-time tail of the VACF of a particle in a
son a discussion of results fas=0.2 is postponed until colloidal suspension should be independent of volume frac-
three-particle contributions can be included. In this context ition. Our analysis strongly supports the conclusion from re-
is worthwhile to mention that the apparent lack of scaling incent experiments and numerical simulations that in addition
the results of the time-dependent self-diffusion coefficiento the time-dependent diffusion coefficients also the long-
for ¢=0.25, which are shown in Ref13], is partly due to time tails of the VACF of colloidal particles depend on the
the assumption that corrections ©{ ¢?) would not be very  volume fraction. Furthermore, the present results are consis-
important. This appears to be, however, an incorrect conclutent with the analysis of the volume-fraction-dependent
sion. Foro=1 the present theoretical results support themodification of the long-time tail of the VACF of colloidal
experimental data and simulation results reported in recerparticles reported by Milner and Liil2].

years[2,5,7,9,11 The results for other values of between An important conclusion of this work is that the theoreti-
0 and 2 support the idea that scaling also exists for systensally obtained time-dependent diffusion coefficient shows al-
where the density of the particles is not the same as the fluitkady scaling for & <2 when two-particle hydrodynamic
density. It is not clear if scaling remains important in theinteractions, in combination with the simplest pair distribu-
case of a high particle to fluid density mismatet®{1). The tion function for obtaining configurational averages, are in-
higher o, the more expensivérom a computational point of cluded in the calculation of the VACF.

view) the calculations are to obtain the VACF and time-

dependent Qiﬁusion coef_ficients. Fipally, it is intgrgsting to ACKNOWLEDGMENT
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